
Data Validation Levels
by Bob Swart

Everyone is sure to face this
problem at one time or

another: data validation on user
input. Especially for data-entry
screens with multiple fields of
(possibly multiple) records and ta-
bles. Data validation can come in
at several levels: we could apply
it at the input level (edit masks),
field level, record/table level and
even dialog or application level.
This article will show what each
level of data validation consists
of, how we can apply it and hence
when to use (or not use) it.

Input Level
The lowest level of data validation
is directly at the user input level
and can be done using edit masks
or discrete selection lists (a
combo-box or listbox where only
one item can be selected).

We can implement input level
data validation for date type fields,
for example, by allowing only num-
bers and separators. A TDBEdit
component has an EditMask prop-
erty. If you click on the ellipsis (...)
in the Object Inspector, the Input
Mask Editor fires up and you can
define the mask for this particular
editbox for user input level valida-
tion. For a date type field (birthday
for example), this would be as
shown in Figure 1.

Note that in this case we can sim-
ply select one of the predefined
sample masks. After clicking OK,
the resulting EditMask field of a
TDBEdit class has the value
!99/99/00;1;_ which does not
require any additional coding at all.

Field Level
Even when we’ve applied input
level data validation, we cannot be
sure that the entire field value is
valid. For example, the valid date
that was input using the EditMask in
the previous example might not be
a valid birthday (it might be a future
date). So, we must add semantic
checks to the individual fields as
well: field level data validation.

We can easily implement field
level data validation using the
OnValidate event of any TField
class by selecting the field in the
Object Inspector and clicking on
the OnValidate event in the events
page. The code in Listing 1 checks
for a valid birthday, for example.

Now, when we enter a value of,
say, 07/11/97, an exception is
raised and we get a message dialog.
The exception will also make sure
that the update will not happen to
the field (and hence not to the
record or to the table). We’d have
to cancel the update or modify the
value.

Record/Table Level
Sometimes, when we have individ-
ual fields checked for their validity,

we’re still not sure if the record
itself is valid. For example, when
the birthday field leads to an age of
2 and the number-of-children field
also has a valid value 2, you still
know something is wrong at record
level...

We can implement record level
data validation by using the
BeforePost even of a TTable class as
shown in Listing 2 (note that these
conditions span multiple fields and
require more coding than field
level validations).

Now, when we enter a value of,
say, 07/11/94 and a value of 2 in a
number-of-children field then an
exception is raised and we get a
message dialog.

Rules like these are often also
referred to as Business Rules,

➤ Figure 1

procedure TForm1.Table1BeforePost(DataSet: TDataset);
begin
 if (DataSet.FieldByName(’NUMBER_OF_CHILDREN’).AsInteger > 0) and
 ((Now - DataSet.FieldByName(’BIRTH_DATE’).AsDateTime) < (12 * 365)) then
 raise Exception.Create(
 ’Birthday inconsistent with number of children...’)
end;

➤ Listing 2

procedure TForm1.Table1BIRTH_DATEValidate(Sender: TField);
begin
 if (Sender AS TDateField).Value > Now then
 raise Exception.Create(’Birthday is a future date...’)
end;

➤ Listing 1

September 1996 The Delphi Magazine 29

especially when combining more
tables together (which is much like
referential integrity).

Dialog/Form Level
Sometimes, we may want to close a
dialog before we’ve saved the cur-
rent (edited) record in the table.
This may be on purpose, but it may
be a mistake and we actually mean
the record to be saved. Or we mean
the record to be checked and
saved at a multi-table level (for ex-
ample to check referential integ-
rity). Fortunately, every TForm has
an OnCloseQuery event that we use
to check if a table is currently in the
edit or insert state. See Listing 3.

Now, if we want to close the
dialog or form while the table is still
in insert or edit mode we get the
dialog shown in Figure 2, where we
can decide whether to post the
updates to the table. Of course, if

we click Yes and a post is done the
BeforePost event of the table can be
fired which can result in an
exception if the record/table data
validation rules indicate a
violation.

Summary
Input level validation can be added
to the EditMask property of TDBEdit
controls, field level validation can
be added to the OnValidate event of
the individual TField classes,
record/table level validation can
be added to the OnBeforePost event
of the TTable classes and finally
dialog/form level validation can be
added to the OnCloseQuery event of

the entire dialog or form class.
Each level of data entry validation
can build upon the previous one,
and depending on the situation you
may need one or more of them to
support the full range of validation.

Bob Swart (aka Dr.Bob, check out
http://www.pi.net/~drbob/) is a
professional software developer
using Delphi and C++ for Bolesian,
and a free-lance technical author
for The Delphi Magazine. In his
spare time, he likes to watch video
tapes of Star Trek Voyager and
Deep Space Nine with his 2.5 year
old son Erik Mark Pascal.

procedure TForm1.FormCloseQuery(Sender: TObject; var CanClose: Boolean);
var Result: Word;
begin
 if Table1.State in [dsEdit,dsInsert] then begin
 Result := MessageDlg(’Save Changes to ’+Table1.TableName+’?’,
 mtConfirmation, [mbYes, mbNo, mbCancel], 0);
 CanClose := True;
 case Result of
 MrYes : Table1.Post;
 MrNo : Table1.Cancel;
 MrCancel : CanClose := False
 end
 end
end;

➤ Listing 3

➤ Figure 2

30 The Delphi Magazine Issue 13

	Input Level
	Field Level
	Record/Table Level
	Dialog/Form Level
	Summary

